12 Predictions for ’16: mono-cloud ambitions die as containers drive more hybrid IT

I expect 2016 to be a confusing year for everyone in IT.  For 2015, I predicted that new uses for containers are going to upset cloud’s apple cart; however, the replacement paradigm is not clear yet.  Consequently, I’m doing a prognostication mix and match: five predictions and seven items on a “container technology watch list.”

TL;DR: In 2016, Hybrid IT arrives on Containers’ wings.

Considering my expectations below, I think it’s time to accept that all IT is heterogeneous and stop trying to box everything into a mono-cloud.  Accepting hybrid as current state unblocks many IT decisions that are waiting for things to settle down.

Here’s the memo: “Stop waiting.  It’s not going to converge.”

2016 Predictions

  1. Container Adoption Seen As Two Stages:  We will finally accept that Containers have strength for both infrastructure (first stage adoption) and application life-cycle (second stage adoption) transformation.  Stage one offers value so we will start talking about legacy migration into containers without shaming teams that are not also rewriting apps as immutable microservice unicorns.
  2. OpenStack continues to bump and grow.  Adoption is up and open alternatives are disappearing.  For dedicated/private IaaS, OpenStack will continue to gain in 2016 for basic VM management.  Both competitive and internal pressures continue to threaten the project but I believe they will not emerge in 2016.  Here’s my complete OpenStack 2016 post?
  3. Amazon, GCE and Azure make everything else questionable.  These services are so deep and rich that I’d question anyone who is not using them.  At least one of them simply have to be part of everyone’s IT strategy for financial, talent and technical reasons.
  4. Cloud API becomes irrelevant. Cloud API is so 2011!  There are now so many reasonable clients to abstract various Infrastructures that Cloud APIs are less relevant.  Capability, interoperability and consistency remain critical factors, but the APIs themselves are not interesting.
  5. Metal aaS gets interesting.  I’m a big believer in the power of operating metal via an API and the RackN team delivers it for private infrastructure using Digital Rebar.  Now there are several companies (Packet.net, Ubiquity Hosting and others) that offer hosted metal.

2016 Container Tech Watch List

I’m planning posts about all these key container ecosystems for 2016.  I think they are all significant contributors to the emerging application life-cycle paradigm.

  1. Service Containers (& VMs): There’s an emerging pattern of infrastructure managed containers that provide critical host services like networking, logging, and monitoring.  I believe this pattern will provide significant value and generate it’s own ecosystem.
  2. Networking & Storage Services: Gaps in networking and storage for containers need to get solved in a consistent way.  Expect a lot of thrash and innovation here.
  3. Container Orchestration Services: This is the current battleground for container mind share.  Kubernetes, Mesos and Docker Swarm get headlines but there are other interesting alternatives.
  4. Containers on Metal: Removing the virtualization layer reduces complexity, overhead and cost.  Container workloads are good choices to re-purpose older servers that have too little CPU or RAM to serve as VM hosts.  Who can say no to free infrastructure?!  While an obvious win to many, we’ll need to make progress on standardized scale and upgrade operations first.
  5. Immutable Infrastructure: Even as this term wins the “most confusing” concept in cloud award, it is an important one for container designers to understand.  The unfortunate naming paradox is that immutable infrastructure drives disciplines that allow fast turnover, better security and more dynamic management.
  6. Microservices: The latest generation of service oriented architecture (SOA) benefits from a new class of distribute service registration platforms (etcd and consul) that bring new life into SOA.
  7. Paywall Registries: The important of container registries is easy to overlook because they seem to be version 2.0 of package caches; however, container layering makes these services much more dynamic and central than many realize.  (more?  Bernard Golden and I already posted about this)

What two items did not make the 2016 cut?  1) Special purpose container-focused operating systems like CoreOS or RancherOS.  While interesting, I don’t think these deployment technologies have architectural level influence.  2) Container Security via VMs. I’m seeing patterns where containers may actually be more secure than VMs.  This is FUD created by people with a vested interest in virtualization.

Did I miss something? I’d love to know what you think I got right or wrong!

¡Sí, Sí! That’s a Two Hundred Node Metal Docker Swarm Deployment

Today, RackN and Ubiquity Hosting announced a 200 node Docker Swarm deployment on hosted bare metal.

Leveraging the current Digital Rebar core and the RackN Swarm workload, this reference deployment was automatically configured using the same components that also work on a desktop VM deployment. That high fidelity deployment allows operators to start learning quickly on small systems then grow to AWS and if warranted, potentially smoothly transition to scale metal.

This deployment represents RackN starting a new chapter with Digital Rebar because it demonstrates a commitment deploy on any infrastructure: cloud, metal or something in between.

The RackN team started this journey with a “composable ops” vision that allows operators to mix and match. That spans both vendor physical resources and software components such as operating systems, software defined networking and platforms. In the 200 node Swarm cluster, physical infrastructure is provisioned by Ubiquity Hosting not Digital Rebar or RackN.  Historically, RackN focused on private infrastructure.  Now, users get the option of best-in-class metal deployment without having to own the infrastructure.

We experienced the futility of making Ops homogeneous and declared defeat.

Accepting that each data center has individual Ops was pivotal. Digital Rebar embraces heterogeneity at the most fundamental architectural level. Our system approach and unique composable abstractions allow users to make deployments portable between any infrastructure with existing tooling and operational processes. Portability means that we can both eliminate the fidelity gap as we scale and between deployments.

When multiple scales and sites can share deployment automation, we can finally work together on addressing critical operational issues like scale, high availability and upgrade

This 200 node deployment demonstrates more than scale and the deployment of the latest Docker technology. It is a milestone on the path toward sharable production operations.

Introducing Digital Rebar. Building strong foundations for New Stack infrastructure

digital_rebarThis week, I have the privilege to showcase the emergence of RackN’s updated approach to data center infrastructure automation that is container-ready and drives “cloud-style” DevOps on physical metal.  While it works at scale, we’ve also ensured it’s light enough to run a production-fidelity deployment on a laptop.

You grow to cloud scale with a ready-state foundation that scales up at every step.  That’s exactly what we’re providing with Digital Rebar.

Over the past two years, the RackN team has been working on microservices operations orchestration in the OpenCrowbar code base.  By embracing these new tools and architecture, Digital Rebar takes that base into a new directions.  Yet, we also get to leverage a scalable heterogeneous provisioner and integrations for all major devops tools.  We began with critical data center automation already working.

Why Digital Rebar? Traditional data center ops is being disrupted by container and service architectures and legacy data centers are challenged with gracefully integrating this new way of managing containers at scale: we felt it was time to start a dialog the new foundational layer of scale ops.

Both our code and vision has substantially diverged from the groundbreaking “OpenStack Installer” MVP the RackN team members launched in 2011 from inside Dell and is still winning prizes for SUSE.

We have not regressed our leading vendor-neutral hardware discovery and configuration features; however, today, our discussions are about service wrappers, heterogeneous tooling, immutable container deployments and next generation platforms.

Over the next few days, I’ll be posting more about how Digital Rebar works (plus video demos).

As Docker rises above (and disrupts) clouds, I’m thinking about their community landscape

Watching the lovefest of DockerConf last week had me digging up my April 2014 “Can’t Contain(erize) the Hype” post.  There’s no doubt that Docker (and containers more broadly) is delivering on it’s promise.  I was impressed with the container community navigating towards an open platform in RunC and vendor adoption of the trusted container platforms.

I’m a fan of containers and their potential; yet, remotely watching the scope and exuberance of Docker partnerships seems out of proportion with the current capabilities of the technology.

The latest update to the Docker technology, v1.7, introduces a lot of important network, security and storage features.  The price of all that progress is disruption to ongoing work and integration to the ecosystem.

There’s always two sides to the rapid innovation coin: “Sweet, new features!  Meh, breaking changes to absorb.”

Docker Ecosystem Explained

Docker Ecosystem Explained

There remains a confusion between Docker the company and Docker the technology.  I like how the chart (right) maps out potential areas in the Docker ecosystem.  There’s clearly a lot of places for companies to monetize the technology; however, it’s not as clear if the company will be able to secede lucrative regions, like orchestration, to become a competitive landscape.

While Docker has clearly delivered a lot of value in just a year, they have a fair share of challenges ahead.  

If OpenStack is a leading indicator, we can expect to see vendor battlegrounds forming around networking and storage.  Docker (the company) has a chance to show leadership and build community here yet could cause harm by giving up the arbitrator role be a contender instead.

One thing that would help control the inevitable border skirmishes will be clear definitions of core, ecosystem and adjacencies.  I see Docker blurring these lines with some of their tools around orchestration, networking and storage.  I believe that was part of their now-suspended kerfuffle with CoreOS.

Thinking a step further, parts of the Docker technology (RunC) have moved over to Linux Foundation governance.  I wonder if the community will drive additional shared components into open governance.  Looking at Node.js, there’s clear precedent and I wonder if Joyent’s big Docker plans have them thinking along these lines.

StackEngine Docker on Metal via RackN Workload for OpenCrowbar

6/19: This was CROSS POSTED WITH STACKENGINE

In our quest for fast and cost effective container workloads, RackN and StackEngine have teamed up to jointly develop a bare metal StackEngine workload for the RackN Enterprise version of OpenCrowbar.  Want more background on StackEngine?  TheNewStack.io also did a recent post covering StackEngine capabilities.

While this work is early, it is complete enough for field installs.  We’d like to include potential users in our initial integration because we value your input.

Why is this important?  We believe that there are significant cost, operational and performance benefits to running containers directly on metal.  This collaboration is a tangible step towards demonstrating that value.

What did we create?  The RackN workload leverages our enterprise distribution of OpenCrowbar to create a ready state environment for StackEngine to be able to deploy and automate Docker container apps.

In this pass, that’s a pretty basic Centos 7.1 environment that’s hardware and configured.  The workload takes your StackEngine customer key as the input.  From there, it will download and install StackEngine on all the nodes in the system.  When you choose which nodes also manage the cluster, the workloads will automatically handle the cross registration.

What is our objective?  We want to provide a consistent and sharable way to run directly on metal.  That accelerates the exploration of this approach to operationalizing container infrastructure.

What is the roadmap?  We want feedback on the workload to drive the roadmap.  Our first priority is to tune to maximize performance.  Later, we expect to add additional operating systems, more complex networking and closed-loop integration with StackEngine and RackN for things like automatic resources scheduling.

How can you get involved?  If you are interested in working with a tech-preview version of the technology, you’ll need to a working OpenCrowbar Drill implementation (via Github or early access available from RackN), a StackEngine registration key and access to the RackN/StackEngine workload (email info@rackn.com or info@stackengine.com for access).

exploring Docker Swarm on Bare Metal for raw performance and ops simplicity

As part of our exploration of containers on metal, the RackN team has created a workload on top of OpenCrowbar as the foundation for a Docker Swarm on bare metal cluster.  This provides a second more integrated and automated path to Docker Clusters than the Docker Machine driver we posted last month.

It’s really pretty simple: The workload does the work to deliver an integrated physical system (Centos 7.1 right now) that has Docker installed and running.  Then we build a Consul cluster to track the to-be-created Swarm.  As new nodes are added into the cluster, they register into Consul and then get added into the Docker Swarm cluster.  If you reset or repurpose a node, Swarm will automatically time out of the missing node so scaling up and down is pretty seamless.

When building the cluster, you have the option to pick which machines are masters for the swarm.  Once the cluster is built, you just use the Docker CLI’s -H option against the chosen master node on the configured port (defaults to port 2475).

This work is intended as a foundation for more complex Swarm and/or non-Docker Container Orchestration deployments.  Future additions include allowing multiple network and remote storage options.

You don’t need metal to run a quick test of this capability.  You can test drive RackN OpenCrowbar using virtual machines and then expand to the full metal experience when you are ready.

Contact info@rackn.com for access to the Docker Swarm trial.   For now, we’re managing the subscriber base for the workload.  OpenCrowbar is a pre-req and ungated.  We’re excited to give access to the code – just ask.

The Matrix & Surrogates as an analogies for VMs, Containers and Metal

010312_1546_2012CloudOu1.jpgTrench coats aside, I used The Matrix as a useful analogy to explain visualization and containers to a non-technical friend today.  I’m interested in hearing from others if this is a helpful analogy.

Why does anyone care about virtual servers?

Virtual servers (aka virtual machines or VMs) are important because data centers are just like the Matrix.  The real world of data centers is a ugly, messy place fraught with hidden dangers and unpleasant chores.  Most of us would rather take the blue pill and live in a safe computer generated artificial environment where we can ignore those details and live in the convenient abstraction of Mega City.

Do VMs really work to let you ignore the physical stuff?

Pretty much.  For most people, they can live their whole lives within the virtual world.  They can think they are eating the steak and never try bending the spoons.

So why are containers disruptive?  

Well, it’s like the Surrogates movie.  Right now, a lot of people living in the Cloud Matrix are setting up even smaller bubbles.  They are finding that they don’t need a whole city, they can just live inside a single room.  For them, it’s more like Surrogates where people never leave their single room.

But if they never leave the container, do they need the Matrix?

No.  And that’s the disruption.  If you’ve wrapped yourself in a smaller bubble then you really don’t need to larger wrapper.

What about that messy “real world”?

It’s still out there in both cases.  Just once you are inside the inner bubble, you can’t really tell the difference.