Deploy to Metal? No sweat with RackN new Ansible Dynamic Inventory API

Content originally posted by Ansibile & RackN so I added a video demo.  Also, see Ansible’s original post for more details about the multi-vendor “Simple OpenStack Initiative.”

The RackN team takes our already super easy Ansible integration to a new level with added SSH Key control and dynamic inventory with the recent OpenCrowbar v2.3 (Drill) release.  These two items make full metal control more accessible than ever for Ansible users.

The platform offers full key management.  You can add keys at the system. deployment (group of machines) and machine levels.  These keys are operator settable and can be added and removed after provisioning has been completed.  If you want to control access to groups on a servers or group of server basis, OpenCrowbar provides that control via our API, CLI and UI.

We also provide a API path for Ansible dynamic inventory.  Using the simple Python client script (reference example), you can instantly a complete upgraded node inventory of your system.  The inventory data includes items like number of disks, cpus and amount of RAM.  If you’ve grouped machines in OpenCrowbar, those groups are passed to Ansible.  Even better, the metadata schema includes the networking configuration and machine status.

With no added configuration, you can immediately use Ansible as your multi-server CLI for ad hoc actions and installation using playbooks.

Of course, the OpenCrowbar tools are also available if you need remote power control or want a quick reimage of the system.

RackN respects that data centers are heterogenous.  Our vision is that your choice of hardware, operating system and network topology should not break devops deployments!  That’s why we work hard to provide useful abstracted information.  We want to work with you to help make sure that OpenCrowbar provides the right details to create best practice installations.

For working with bare metal, there’s no simpler way to deliver consistent repeatable results

DefCore Update – slowly taming the Interop hydra.

Last month, the OpenStack board charged the DefCore committee to tighten the specification. That means adding more required capabilities to the guidelines and reducing the number of exceptions (“flags”).  Read the official report by Chris Hoge.

Cartography by Dave McAlister is licensed under a. Creative Commons Attribution 4.0 International License.

It turns out interoperability is really, really hard in heterogenous environments because it’s not just about API – implementation choices change behavior.

I see this in both the cloud and physical layers. Since OpenStack is setup as a multi-vendor and multi-implementation (private/public) ecosystem, getting us back to a shared least common denominator is a monumental challenge. I also see a similar legacy in physical ops with OpenCrowbar where each environment is a snowflake and operators constantly reinvent the same tooling instead of sharing expertise.

Lack of commonality means the industry wastes significant effort recreating operational knowledge for marginal return. Increasing interop means reducing variations which, in turn, increases the stakes for vendors seeking differentiation.

We’ve been working on DefCore for years so that we could get to this point. Our first real Guideline, 2015.03, was an intentionally low bar with nearly half of the expected tests flagged as non-required. While the latest guidelines do not add new capabilities, they substantially reduce the number of exceptions granted. Further, we are in process of adding networking capabilities for the planned 2016.01 guideline (ready for community review at the Tokyo summit).

Even though these changes take a long time to become fully required for vendors, we can start testing interoperability of clouds using them immediately.

While, the DefCore guidelines via Foundation licensing policy does have teeth, vendors can take up to three years [1] to comply. That may sounds slow, but the real authority of the program comes from customer and vendor participation not enforcement [2].

For that reason, I’m proud that DefCore has become a truly diverse and broad initiative.

I’m further delighted by the leadership demonstrated by Egle Sigler, my co-chair, and Chris Hoge, the Foundation staff leading DefCore implementation.  Happily, their enthusiasm is also shared by many other people with long term DefCore investments including mid-cycle attendees Mark Volker (VMware), Catherine Deip (IBM) who is also a RefStack PTL, Shamail Tahir (EMC), Carol Barrett (Intel), Rocky Grober (Huawei), Van Lindberg (Rackspace), Mark Atwood (HP), Todd Moore (IBM), Vince Brunssen (IBM). We also had four DefCore related project PTLs join our mid-cycle: Kyle Mestery (Neutron), Nikhil Komawar (Glance),  John Dickinson (Swift), and Matthew Treinish (Tempest).

Thank you all for helping keep DefCore rolling and working together to tame the interoperability hydra!

[1] On the current schedule – changes will now take 1 year to become required – vendors have a three year tail! Three years? Since the last two Guideline are active, the fastest networking capabilities will be a required option is after 2016.01 is superseded in January 2017. Vendors who (re)license just before that can use the mark for 12 months (until January 2018!)

[2] How can we make this faster? Simple, consumers need to demand that their vendor pass the latest guidelines. DefCore provides Guidelines, but consumers checkbooks are the real power in the ecosystem.

Curious about SDN & OpenStack? We discuss at Open Networking Summit Panel (next Thursday)

Next Thursday (6/18), I’m on a panel at the SJC Open Networking Summit with John Zannos (Canonical), Mark Carroll (HP), Mark McClain (VMware).  Our topic is software defined networking (SDN) and OpenStack which could go anywhere in discussion.
OpenStack is clearly driving a lot of open innovation around SDN (and NFV).
I have no idea of what other’s want to bring in, but I was so excited about the questions that I suggested that I thought to just post them with my answers here as a teaser.

1) Does OpenStack require an SDN to be successful?

Historically, no.  There were two networking modes.  In the future, expect that some level of SDN will be required via the Neutron part of the project.

More broadly, SDN appears to be a critical component to broader OpenStack success.  Getting it right creates a lock-in for OpenStack.

2) If you have an SDN for OpenStack, does it need to integrate with your whole datacenter or can it be an island around OpenStack?

On the surface, you can create an Island and get away with it.  More broadly, I think that SDN is most interesting if it provides network isolation throughout your data center or your hosting provider’s data center.  You may not run everything on top of OpenStack but you will be connecting everything together with networking.

SDN has the potential to be the common glue.

3) Of the SDN approaches, which ones seem to be working?  Why?

Overall, the overlay networking approaches seem to be leading.  Anything that requires central control and administration will have to demonstrate it can scale.  Anything that actually requires re-configuring the underlay networking quickly is also going to have to make a lot of progress.

Networking is already distributed.  Anything that breaks that design pattern has an uphill battle.

4) Are SDN and NFV co-dependent?  Are they driving each other?

Yes.  The idea of spreading networking functions throughout your data center to manage east-west or individual tenant requirements (my definition of NFV) requires a way to have isolated traffic (one of the uses for SDN).

5) Is SDN relevant outside of OpenStack?  If so, in what?

Yes.  SDN on containers will become increasingly important.  Also, SDN termination to multi-user systems (like a big database) also make sense.

6) IPv6?  A threat or assistance to SDN?

IPv6 is coming, really.  I think that IPv6 has isolation and encryption capabilities that compete with SDN as an overlay.  Widespread IPv6 adoption could make SDN less relevant.  It also does a better job for multi-cloud networking since it’s neutral and you don’t have to worry about which SDN tech your host is using.

@NextCast chat about DefCore, Metal Ops and OpenStack evolution

In Vancouver, I sat down with Scott Sanchez (EMC) and Jeff Dickey (Redapt) for a NextCast discussion.   We covered a lot of my favorite subjects including DefCore and Ready State bare metal operations.

One of the things I liked about this discussion was that we were able to pull together the seemly disparate threads that I’m work on around OpenStack.

10 ways to make OpenStack more Start-up Friendly [even more critical in wake of recent consolidation]

The Josh McKenty comment that OpenStack is “aggressively anti-startup” for Business Insider got me thinking and today’s news about IBM & Cisco acquiring startups Blue Box & Piston made me decide to early release this post.

2013-03-11_20-01-50_458I think there’s a general confusion about start-ups in OpenStack.  Many of the early (and now acquired) start-ups were selling OpenStack the platform.  Since OpenStack is community infrastructure, that’s a really hard place to differentiate.  Unfortunately, there’s no material install base (yet) to create an ecosystem of start-ups on top of OpenStack.

The real question is not how to make OpenStack start-up friendly, but how to create a thriving system around OpenStack like Amazon and VMware have created.

That said, here’s my list of ten ways that OpenStack could be more start-up friendly:

  1. Accept companies will have some closed tech – Many investors believe that companies need proprietary IP. An “open all things” company will have more trouble with investors.
  2. Stop scoring commits as community currency – Small companies don’t show up in the OpenStack committer economy because they are 1) small and 2) working on their product upstream ahead of OpenStack upstream code.
  3. Have start-up travel assistance – OpenStack demands a lot of travel and start-ups don’t have the funds to chase the world-wide summits and mid-cycles.
  4. Embrace open projects outside of OpenStack governance – Not all companies want or need that type of governance for their start-up code base.  That does not make them less valuable, it just makes them not ready yet.
  5. Stop anointing ecosystem projects as OpenStack projects – Projects that are allowed into OpenStack get to grab to a megaphone even if they have minimal feature sets.
  6. Be language neutral – Python is not the only language and start-ups need to make practical choices based on their objectives, staff and architecture.
  7. Have a stable base – start-ups don’t have time to troubleshoot both their own product and OpenStack.  Without core stability, it’s risky to add OpenStack as a product requirement.
  8. Focus on interoperability – Start-ups don’t have time evangelize OpenStack.  They need OpenStack to have large base of public and private installs because that creates an addressable market.
  9. Limit big companies from making big pre-announcements – Start-ups primary advantage is being a first/fast mover.  When OpenStack members make announcements of intention (generally without substance) it damages the market for start-ups.  Normally corporate announcements are just noise but they are given credibility when they appear to come from the community.
  10. Reduce the contribution tax and patch backlog – Start-ups must seek the path of least friction.  If needed OpenStack code changes require a lot of work and time then they are unlikely to look for less expensive alternatives.

While I believe these items would help start-ups, they would have negative consequences for the large corporate contributors who have fashioned OpenStack into the type of project that supports their needs.

I’d love to what items you think I’ve overlooked or incorrectly added.

OpenStack Vancouver six observations: partners, metal, tents, defore, brands & breakage

As always, OpenStack conferences/summits are packed with talks and discussions.  Any one of these six points could be a full post; however, I would rather post now and start discussions.  Let me know what you think!

1. Partnering Everywhere – it’s froth, not milk

Everyone is partnering with everyone! It’s a good way to appear to cover more around and appear more open. Right now, I believe these partnerships are for show and very shallow. There will be blood when money is flowing and both partners want the lion’s share.

2. Metal is Hot! attention on Ironic & MaaS

Metal is very hot topic. No surprise, but I do not think that either MaaS or Ironic have the right architecture to deal with the real complexity of automating metal in a generalized way. The consequence is that they are limited and hard to operate.

Container talks were also very hot and I believe are ultimately disruptive.  The very fact that all the container talks were overflowing is an indication of the challenges facing virtualization.

3. DefCore – Just in the Nick of Time

I think that the press and analysts were ready to proclaim that OpenStack was fragmenting and being unable to deliver the “one cloud, multiple vendors” vision. DefCore (presented as Interopability by Jonathan Bryce, DefCore shout out!) came in on the buzzer to buy us more time.

4. Big Tent Concerns – what is ecosystem & release?

Big Tent is shorthand for project governance changes that make it easier for new projects to become OpenStack projects and removes the concept of integrated releases.  The exact definition is still a work in progress.

The top concerns I have are:

  1. We cannot tell difference between community & ecosystem. We’re back to anointed projects because we’re now telling projects they have to join OpenStack to work with OpenStack.
  2. We’re changing the definition of the release but have not defined how it will change. I acknowledge that continuous release is ideal but we’re confusing people again.

5. Brands are battling – will they destroy the city?

OpenStack is hard for startups – read the full post here.  The short version is that big companies are taking up all the air.

While some are leading, others they are learning how to collaborate.  Those new to open source are slow to trust and uncertain about where to invest.  Unfortunately, we’ve created a visible contributions economy that does not reward doing the scut work so it’s no surprise that there are concerns that some of the bigger companies are free riding.

6. OpenStack is broken talks – could we reboot?  no.

It’s a sign of OpenStack’s age that Bias, Termie and others suggested we need clean slate.  Frankly, I think that OpenStack would be irrelevant by the time a rewrite was completed and it not helpful to suggest it.

What would I suggest?  I’d promote a strong core (doing!), ensure big companies collaborate on roadmap (doing!) and stop having a single node install as gate and dev reference (I’d happily help use OCB for this with partners)

PS: Apparently Neutron is not broken.

I’m very excited about the “just give me a network” work to make Neutron duplicate Nova-Net functionality.  Finally.

Ready State Foundation for OpenStack now includes Ceph Storage

For the Paris summit, the OpenCrowbar team delivered a PackStack demo that leveraged Crowbar’s ability to create a OpenStack ready state environment.  For the Vancouver summit, we did something even bigger: we updated the OpenCrowbar Ceph workload.

Cp_1600_1200_DB2A1582-873B-413B-8F3C-103377203FDC.jpegeph is the leading open source block storage back-end for OpenStack; however, it’s tricky to install and few vendors invest the effort to hardware optimize their configuration.  Like any foundation layer, configuration or performance errors in the storage layer will impact the entire system.  Further, the Ceph infrastructure needs to be built before OpenStack is installed.

OpenCrowbar was designed to deploy platforms like Ceph.  It has detailed knowledge of the physical infrastructure and sufficient orchestration to synchronize Ceph Mon cluster bring-up.

We are only at the start of the Ceph install journey.  Today, you can use the open source components to bring up a Ceph cluster in a reliable way that works across hardware vendors.  Much remains to optimize and tune this configuration to take advantage of SSDs, non-Centos environments and more.

We’d love to work with you to tune and extend this workload!  Please join us in the OpenCrowbar community.