OpenStack Summit: Let’s talk DevOps, Fog, Upgrades, Crowbar & Dell

If you are coming to the OpenStack summit in San Diego next week then please find me at the show! I want to hear from you about the Foundation, community, OpenStack deployments, Crowbar and anything else.  Oh, and I just ordered a handful of Crowbar stickers if you wanted some CB bling.

Matt Ray (Opscode), Jason Cannavale (Rackspace) and I were Ops track co-chairs. If you have suggestions, we want to hear. We managed to get great speakers and also some interesting sessions like DevOps panel and up streaming deploy working sessions. It’s only on Monday and Tuesday, so don’t snooze or you’ll miss it.

My team from Dell has a lot going on, so there are lots of chances to connect with us:

At the Dell booth, Randy Perryman will be sharing field experience about hardware choices. We’ve got a lot of OpenStack battle experience and we want to compare notes with you.

I’m on the board meeting on Monday so likely occupied until the Mirantis party.

See you in San Diego!

PS: My team is hiring for Dev, QA and Marketing. Let me know if you want details.

Big Data to tame Big Government? The answer is the Question.

Today my boss at Dell, John Igoe, is part of announcing of the report from the TechAmerica Federal Big Data Commission (direct pdf), I was fully expecting the report to be a real snoozer brimming with corporate synergies and win-win externalities. Instead, I found myself reading a practical guide to applying Big Data to government. Flipping past the short obligatory “what is…” section, the report drives right into a survey of practical applications for big data spanning nearly every governmental service. Over half of the report is dedicated to case studies with specific recommendations and buying criteria.

Ultimately, the report calls for agencies to treat data as an asset. An asset that can improve how government operates.

There are a few items that stand out in this report:

  1. Need for standards on privacy and governance. The report calls out a review and standardization of cross agency privacy policy (pg 35) and a Chief Data Officer position each agency (pg 37).
  2. Clear tables of case studies on page 16 and characteristics on page 11 that help pin point a path through the options.
  3. Definitive advice to focus on a single data vector (velocity, volume or variety) for initial success on page 28 (and elsewhere)

I strongly agree with one repeated point in the report: although there is more data available, our ability to comprehend this data is reduced. The sheer volume of examples the report cites is proof enough that agencies are, and will be continue to be, inundated with data.

One short coming of this report is that it does not flag the extreme storage of data scientists. Many of the cases discussed assume a ready army of engineers to implement these solutions; however, I’m uncertain how the government will fill positions in a very tight labor market. Ultimately, I think we will have to simply open the data for citizen & non-governmental analysis because, as the report clearly states, data is growing faster than capability to use it.

I commend the TechAmerica commission for their Big Data clarity: success comes from starting with a narrow scope. So the answer, ironically, is in knowing which questions we want to ask.

Do Be Dense! Dell C8000 unit merges best of bladed and rackable servers

“Double wide” is not a term I’ve commonly applied to servers, but that’s one of the cool things about this new class of servers that Dell, my employer, started shipping today.

My team has been itching for the chance to start cloud and big data reference architectures using this super dense and flexible chassis. You’ll see it included in our next Apache Hadoop release and we’ve already got customers who are making it the foundation of their deployments (Texas Adv Computing Center case study).

If you’re tracking the latest big data & cloud hardware then the Dell PowerEdge C8000 is worth some investigation.

Basically, the Dell C8000 is a chassis that holds a flexible configuration of compute or storage sleds. It’s not a blade frame because the sleds minimize shared infrastructure. In our experience, cloud customers like the dedicated i/o and independence of sleds (as per the Bootstrapping clouds white paper). Those attributes are especially well suited for Hadoop and OpenStack because they support a “flat edges” and scale out design. While i/o independence is valued, we also want shared power infrastructure and density for efficiency reasons. Using a chassis design seems to capture the best of both worlds.

The novelty for the Dell PowerEdge C8000 is that the chassis are scary flexible. You are not locked into a pre-loaded server mix.

There are a plethora of sled choices so that you can mix choices for power, compute density and spindle counts. That includes double-wide sleds positively brimming with drives and expanded GPU processers. Drive density is important for big data configurations that are disk i/o hungry; however, our experience is the customer deployments are highly varied based on the planned workload. There are also significant big data trends towards compute, network, and balanced hardware configurations. Using the C8000 as a foundation is powerful because it can cater to all of these use-case mixes.

That reminds me! Mike Pittaro (our team’s Hadoop lead architect) did an excellent Deploy Hadoop using Crowbar video.

Interested in more opinions about the C8000? Check out Barton George & David Meyer.

I am seeking your vote(s) for the OpenStack Board

If registered, you have 8 votes to allocate as you wish.  You will get a link via email – you must use that link.

Joseph B George and I are cross-blogging this post because we are jointly seeking your vote(s) for individual member seats on the OpenStack Foundation board.  This is key point in the OpenStack journey and we strongly encourage eligible voters to participate no matter who you vote for!  As we have said before, success of the Foundation governance process matters just as much as the code because it ensures equal access and limits forking.

We think that OpenStack succeeds because it is collaboratively developed.  It is essential that we select board members who have a proven record of community development, a willingness to partner and have demonstrated investment in the project.

Our OpenStack vision favors production operations by being operator, user and ecosystem focused.  If elected, we will represent these interests by helping advance deployability, API specifications, open operations and both large and small scale cloud deployments.

Of the nominees, we best represent OpenStack users and operators (as opposed to developers).  We have the most diverse experience in real-world OpenStack deployments because our solution has been deployed broadly (both as Dell and through Crowbar.  We have a proven record of collaborating broadly with contributors, demonstrated skills at building the OpenStack community and doing real open source work to ensure that OpenStack is the most deployable cloud platform anywhere.

Let’s get specific about our leadership in the OpenStack project and community:

  • We have been active and vocal leaders in the OpenStack community
    • our team has established two very active user groups (Austin & Boston)
    • we have lead multiple world-wide deploy day events (March 2012  &  May 2012).
    • we have substantial experience in the field and know the challenges of running OpenStack for a wide variety of real-world deployments
    • our first solution came out on Cactus!  We’ve been delivering on Essex since OSCON 2012 (http://www.oscon.com/ ).
  • We represent a broad range of deployment scenarios ranging from hosting, government, healthcare, retail, education, media, financial and more!
  • We have broad engagements and partnerships at the infrastructure (SUSE, Canonical, Redhat), consulting (Canonical, Mirantis) and ecosystem layers (enStratus) and beyond!
  • We have a proven track record of collaboration instead of forking/disrupting – a critical skill for this project reflected by our consistent actions to preserve the integrity of the project.
  • We have led the “make OpenStack deployable” campaign with substantial investments (open source Crowbar, white papers, documentation & cookbooks.
  • We have very long and consistent history with the project starting even before the first OpenStack summit in Austin.

Of course, we’re asking for you to consider for both of us; however, if you want to focus on just one then here’s the balance between us.  Rob (bio) is a technologist with deep roots in cloud technology, data center operations and open source.  Joseph is a business professional with experience new product introduction and enterprise delivery.

Not sure if you can vote?  If you registered as an individual member then your name should be on the voting list.  In that case, you can vote between 8/20 and 8/24.

Crowbar 2.0 Design Summit Notes (+ open weekly meetings starting)

I could not be happier with the results Crowbar collaborators and my team at Dell achieved around the 1st Crowbar design summit. We had great discussions and even better participation.

The attendees represented major operating system vendors, configuration management companies, OpenStack hosting companies, OpenStack cloud software providers, OpenStack consultants, OpenStack private cloud users, and (of course) a major infrastructure provider. That’s a very complete cross-section of the cloud community.

I knew from the start that we had too little time and, thankfully, people were tolerant of my need to stop the discussions. In the end, we were able to cover all the planned topics. This was important because all these features are interlocked so discussions were iterative. I was impressed with the level of knowledge at the table and it drove deep discussion. Even so, there are still parts of Crowbar that are confusing (networking, late binding, orchestration, chef coupling) even to collaborators.

In typing up these notes, it becomes even more blindingly obvious that the core features for Crowbar 2 are highly interconnected. That’s no surprise technically; however, it will make the notes harder to follow because of knowledge bootstrapping. You need take time and grok the gestalt and surf the zeitgeist.

Collaboration Invitation: I wanted to remind readers that this summit was just the kick-off for a series of open weekly design (Tuesdays 10am CDT) and coordination (Thursdays 8am CDT) meetings. Everyone is welcome to join in those meetings – information is posted, recorded, folded, spindled and mutilated on the Crowbar 2 wiki page.

These notes are my reflection of the online etherpad notes that were made live during the meeting. I’ve grouped them by design topic.

Introduction

  • Contributors need to sign CLAs
  • We are refactoring Crowbar at this time because we have a collection of interconnected features that could not be decoupled
  • Some items (Database use, Rails3, documentation, process) are not for debate. They are core needs but require little design.
  • There are 5 key topics for the refactor: online mode, networking flexibility, OpenStack pull from source, heterogeneous/multi operating systems, being CDMB agnostic
  • Due to time limits, we have to stop discussions and continue them online.
  • We are hoping to align Crowbar 2 beta and OpenStack Folsom release.

Online / Connected Mode

  • Online mode is more than simply internet connectivity. It is the foundation of how Crowbar stages dependencies and components for deploy. It’s required for heterogeneous O/S, pull from source and it has dependencies on how we model networking so nodes can access resources.
  • We are thinking to use caching proxies to stage resources. This would allow isolated production environments and preserves the run everything from ISO without a connection (that is still a key requirement to us).
  • Suse’s Crowbar fork does not build an ISO, instead it relies on RPM packages for barclamps and their dependencies.
  • Pulling packages directly from the Internet has proven to be unreliable, this method cannot rely on that alone.

Install From Source

  • This feature is mainly focused on OpenStack, it could be applied more generally. The principals that we are looking at could be applied to any application were the source code is changing quickly (all of them?!). Hadoop is an obvious second candidate.
  • We spent some time reviewing the use-cases for this feature. While this appears to be very dev and pre-release focused, there are important applications for production. Specifically, we expect that scale customers will need to run ahead of or slightly adjacent to trunk due to patches or proprietary code. In both cases, it is important that users can deploy from their repository.
  • We discussed briefly our objective to pull configuration from upstream (not just OpenStack, but potentially any common cookbooks/modules). This topic is central to the CMDB agnostic discussion below.
  • The overall sentiment is that this could be a very powerful capability if we can manage to make it work. There is a substantial challenge in tracking dependencies – current RPMs and Debs do a good job of this and other configuration steps beyond just the bits. Replicating that functionality is the real obstacle.

CMDB agnostic (decoupling Chef)

  • This feature is confusing because we are not eliminating the need for a configuration management database (CMDB) tool like Chef, instead we are decoupling Crowbar from the a single CMDB to a pluggable model using an abstraction layer.
  • It was stressed that Crowbar does orchestration – we do not rely on convergence over multiple passes to get the configuration correct.
  • We had strong agreement that the modules should not be tightly coupled but did need a consistent way (API? Consistent namespace? Pixie dust?) to share data between each other. Our priority is to maintain loose coupling and follow integration by convention and best practices rather than rigid structures.
  • The abstraction layer needs to have both import and export functions
  • Crowbar will use attribute injection so that Cookbooks can leverage Crowbar but will not require Crowbar to operate. Crowbar’s database will provide the links between the nodes instead of having to wedge it into the CMDB.
  • In 1.x, the networking was the most coupled into Chef. This is a major part of the refactor and modeling for Crowbar’s database.
  • There are a lot of notes captured about this on the etherpad – I recommend reviewing them

Heterogeneous OS (bare metal provisioning and beyond)

  • This topic was the most divergent of all our topics because most of the participants were using some variant of their own bare metal provisioning project (check the etherpad for the list).
  • Since we can’t pack an unlimited set of stuff on the ISO, this feature requires online mode.
  • Most of these projects do nothing beyond OS provisioning; however, their simplicity is beneficial. Crowbar needs to consider users who just want a stream-lined OS provisioning experience.
  • We discussed Crowbar’s late binding capability, but did not resolve how to reconcile that with these other projects.
  • Critical use cases to consider:
    • an API for provisioning (not sure if it needs to be more than the current one)
    • pick which Operating Systems go on which nodes (potentially with a rules engine?)
    • inventory capabilities of available nodes (like ohai and factor) into a database
    • inventory available operating systems

Ops “Late Binding” is critical best practice and key to Crowbar differentiation

From OSCON 2012: Portland's light rail understands good dev practice.Late binding is a programming term that I’ve commandeered for Crowbar’s DevOps design objectives.

We believe that late binding is a best practice for CloudOps.

Understanding this concept is turning out to be an important but confusing differentiation for Crowbar. We’ve effectively inverted the typical deploy pattern of building up a cloud from bare metal; instead, Crowbar allows you to build a cloud from the top down.  The difference is critical – we delay hardware decisions until we have the information needed to do the correct configuration.

If Late Binding is still confusing, the concept is really very simple: “we hold off all work until you’ve decided how you want to setup your cloud.”

Late binding arose from our design objectives. We started the project with a few critical operational design objectives:

  1. Treat the nodes and application layers as an interconnected system
  2. Realize that application choices should drive down the entire application stack including BIOS, RAID and networking
  3. Expect the entire system to be in a constantly changing so we must track state and avoid locked configurations.

We’d seen these objectives as core tenets in hyperscale operators who considered bare metal and network configuration to be an integral part of their application deployment. We know it is possible to build the system in layers that only (re)deploy once the application configuration is defined.

We have all this great interconnected automation! Why waste it by having to pre-stage the hardware or networking?

In cloud, late binding is known as “elastic computing” because you wait until you need resources to deploy. But running apps on cloud virtual machines is simple when compared to operating a physical infrastructure. In physical operations, RAID, BIOS and networking matter a lot because there are important and substantial variations between nodes. These differences are what drive late binding as a one of Crowbar’s core design principles.

Late Binding Visualized

Crowbar’s early twins: Cloudera Hadoop & OpenStack Essex

I’m proud to see my team announce the twin arrival of the Dell | Cloudera Apache Hadoop (Manager v4) and Dell OpenStack-Powered Cloud (Essex) solutions.

Not only are we simultaneously releasing both of these solutions, they reflect a significant acceleration in pace of delivery.  Both solutions had beta support for their core technologies (Cloudera 4 & OpenStack Essex) when the components were released and we have dramatically reduced the lag from component RC to solution release compared to past (3.7 & Diablo) milestones.

As before, the core deployment logic of these open source based solutions was developed in the open on Crowbar’s github.  You are invited to download and try these solutions yourself.   For Dell solutions, we include validated reference architectures, hardware configuration extensions for Crowbar, services and support.

The latest versions of Hadoop and OpenStack represent great strides for both solutions.   It’s great to be able have made them more deployable and faster to evaluate and manage.

Crowbar 2.0 Objectives: Scalable, Heterogeneous, Flexible and Connected

The seeds for Crowbar 2.0 have been in the 1.x code base for a while and were recently accelerated by SuSE.  With the Dell | Cloudera 4 Hadoop and Essex OpenStack-powered releases behind us, we will now be totally focused bringing these seeds to fruition in the next two months.

Getting the core Crowbar 2.0 changes working is not a major refactoring effort in calendar time; however, it will impact current Crowbar developers by changing improving the programming APIs. The Dell Crowbar team decided to treat this as a focused refactoring effort because several important changes are tightly coupled. We cannot solve them independently without causing a larger disruption.

All of the Crowbar 2.0 changes address issues and concerns raised in the community and are needed to support expanding of our OpenStack and Hadoop application deployments.

Our technical objective for Crowbar 2.0 is to simplify and streamline development efforts as the development and user community grows. We are seeking to:

  1. simplify our use of Chef and eliminate Crowbar requirements in our Opscode Chef recipes.
    1. reduce the initial effort required to leverage Crowbar
    2. opens Crowbar to a broader audience (see Upstreaming)
  2. provide heterogeneous / multiple operating system deployments. This enables:
    1. multiple versions of the same OS running for upgrades
    2. different operating systems operating simultaneously (and deal with heterogeneous packaging issues)
    3. accommodation of no-agent systems like locked systems (e.g.: virtualization hosts) and switches (aka external entities)
    4. UEFI booting in Sledgehammer
  3. strengthen networking abstractions
    1. allow networking configurations to be created dynamically (so that users are not locked into choices made before Crowbar deployment)
    2. better manage connected operations
    3. enable pull-from-source deployments that are ahead of (or forked from) available packages.
  4. improvements in Crowbar’s core database and state machine to enable
    1. larger scale concerns
    2. controlled production migrations and upgrades
  5. other important items
    1. make documentation more coupled to current features and easier to maintain
    2. upgrade to Rails 3 to simplify code base, security and performance
    3. deepen automated test coverage and capabilities

Beyond these great technical targets, we want Crowbar 2.0 is to address barriers to adoption that have been raised by our community, customers and partners. We have been tracking concerns about the learning curve for adding barclamps, complexity of networking configuration and packaging into a single ISO.

We will kick off to community part of this effort with an online review on 7/16 (details).

PS: why a refactoring?

My team at Dell does not take on any refactoring changes lightly because they are disruptive to our community; however, a convergence of requirements has made it necessary to update several core components simultaneously. Specifically, we found that desired changes in networking, operating systems, packaging, configuration management, scale and hardware support all required interlocked changes. We have been bringing many of these changes into the code base in preparation and have reached a point where the next steps require changing Crowbar 1.0 semantics.

We are first and foremost an incremental architecture & lean development team – Crowbar 2.0 will have the smallest footprint needed to begin the transformations that are currently blocking us. There is significant room during and after the refactor for the community to shape Crowbar.

Stop the Presses! Austin OpenStack Meetup 7/12 features docs, bugs & cinder

Don’t miss the 7/12 OpenStack Austin meetup!  We’ve got a great agenda lined up.

This meetup is sponsored by HP (Mark Padovani will give the intro).

Topics will include

  1. 6:30 pre-meeting OpenStack intro & overview for N00bs.
  2. Anne Gentle, OpenStack Technical Writer at Rackspace Hosting, talking about How to contribute to docs & the areas needed. *
  3. Report on the Folsom.3 bug squash day (http://wiki.openstack.org/BugDays/20120712BugSquashing)
  4. (tentative) Greg Althaus, Dell, talking about the “Cinder” Block Storage project
  5. White Board – Next Meeting Topics

* if you contribute to docs then you’ll get an invite to the next design summit!   It’s a great way to support OpenStack even if you don’t write code.

Crowbar Celebrates 1st Anniversary

Nearly a year ago at OSCON 2011, my team at Dell opened sourced “Crowbar, an OpenStack installer.” That first Github commit was a much more limited project than Crowbar today: there was no separation into barclamps, no distinct network configuration, one operating system option and the default passwords were all “openstack.” We simply did not know if our effort would create any interest.

The response to Crowbar has been exciting and humbling. I most appreciate those who looked at Crowbar and saw more than a bare metal installer. They are the ones who recognized that we are trying to solve a bigger problem: it has been too difficult to cope with change in IT operations.

During this year, we have made many changes. Many have been driven by customer, user and partner feedback while others support Dell product delivery needs. Happily, these inputs are well aligned in intent if not always in timing.

  • Introduction of barclamps as modular components
  • Expansion into multiple applications (most notably OpenStack and Apache Hadoop)
  • Multi-Operating System
  • Working in the open (with public commits)
  • Collaborative License Agreements

Dell‘s understanding of open source and open development has made a similar transformation. Crowbar was originally Apache 2 open sourced because we imagined it becoming part of the OpenStack project. While that ambition has faded, the practical benefits of open collaboration have proven to be substantial.

The results from this first year are compelling:

  • For OpenStack Diablo, coordination with the Rackspace Cloud Builder team enabled Crowbar to include the Keystone and Dashboard projects into Dell’s solution
  • For OpenStack Essex, the community focused work we did for the March Essex Hackday are directly linked to our ability to deliver Dell’s OpenStack-Powered Essex solution over two months earlier than originally planned.
  • For Apache Hadoop distributions for 3.x and 4.x with implementation of Cloudera Manager and eco system components.
  • We’ve amassed hundreds of mail subscribers and Github followers
  • Support for multiple releases of RHEL, Centos & Ubuntu including Ubuntu 12.04 while it was still in beta.
  • SuSE does their own port of Crowbar to SuSE with important advances in Crowbar’s install model (from ISO to package).

We stand on the edge of many exciting transformations for Crowbar’s second year. Based on the amount of change from this year, I’m hesitant to make long term predictions. Yet, just within next few months there are significant plans based on Crowbar 2.0 refactor. We have line of site to changes that expand our tool choices, improve networking, add operating systems and become more even production ops capable.

That’s quite a busy year!